Matrices
Rank of Matrices
Definition
\(A\in M_{m\times n}(F)\), \(L_a:F^n\rightarrow F^m, L_A(x)=Ax\)
\(\text{Rank}(A)=\text{Rank}(L_A)\)
Theorem
The rank of a matrix equals the number of linearly independent column vectors of A, i.e., it is the dimension of the span of columns of A.
Proof.
\(A\in M_{m\times n}(F)\)
\(\text{Rank}(A)=\text{dim}(R(L_A))\)
Let \(\beta\) be standard basis of \(F^n\)
\(R(L_A)=\text{span}(L_A(e_i))\)