Determinant
Theorem 4.4
Det(\(A\))=\(\sum a_{ij}c_{ij}\) where \(c_{ij}\) is the cofactor
Characteristic
- Multilinear
- Alternating (If swap two rows, it will given a minus sign)
- Determinant of Id is 1
Elementary Operations
- Swap: \(*-1\)
- Multiply by \(c\): \(*c\)
- Add a multiple of a row to another row: No impact
Properties
- \(det(AB)=det(A)det(B)\)
- \(A\) is invertible iff \(det(A)\neq 0\)
- \(det(A^T)=det(A)\)
Theorem 4.8
\(det(A)=det(A^T)\)
Proof.
\(rank(A)=rank(A^T)\implies\) if \(det(A)=0, det(A^T)=0\)
\(A=\prod E_i\) (increasing i)
\(A^T=\prod E^T_i\) (decreasing i)
\(\det(A^T)=\prod (det(E^T_i))=\prod (det(E_i))=det(A)\)