Derivative, Diagonalizability, Jordan Canonical Form
Ex 1
\(\frac{dy}{dx}=2y\)
\(y=e^{2x}\)
Ex 2
\(\frac{dy_1}{dx}=y_1, \frac{dy_2}{dx}=2y_2\)
Thus,
\(y_1=e^x, y_2=e^{2x}\)
Ex 3
\(\frac{dy_1}{dx}=6y_1+10y_2,\frac{dy_2}{dx}=-2y_1-3y_2\)
Thus,
\[\frac{d}{dx}\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} =\begin{bmatrix}
6 & 10 \\
-2 & -3
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} \]